If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+12x-2.4=0
a = 4.9; b = 12; c = -2.4;
Δ = b2-4ac
Δ = 122-4·4.9·(-2.4)
Δ = 191.04
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-\sqrt{191.04}}{2*4.9}=\frac{-12-\sqrt{191.04}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+\sqrt{191.04}}{2*4.9}=\frac{-12+\sqrt{191.04}}{9.8} $
| -1/2+y=-3/5 | | 3x+4x+2=-12 | | 4x=13.5+9/2x | | 6|4x+4|=24 | | 3(r+1.8)+4.5r=39.15 | | 4n^2+17n+15=0 | | y/3y-10=8 | | (5)/(8)x+4=(3)/(8)x+12 | | 3/4x+10=22 | | V/2+9v/4=v/8 | | 3(r+18)+4.5r=39.15 | | 5/y=6/5 | | z/4+10=14 | | Y=-2x+2/5 | | 23767565443432337632489265437896789236578964789672895698473(x)=4378249873629786524789368x | | −7.7=1.5n−0.5n+9.3 | | 6784326794678(45)+x=7564756475+3x | | x/6=x+7/8 | | X-2=-6+3x | | 3x+6=x+5-3x+6 | | 40.6=10.1+0.5(20.9+x)3.4 | | 6n+42=-26 | | 15x+5x=150 | | 31/2=1/2x+1/2x+x | | 4b=2b-3=-3 | | 9.1=3p+1 | | 120+90x=750 | | x/2=12/6 | | 3-5m=16 | | -14m-7m+1=-7+1 | | 2z-8=6 | | 15x+5x=130 |